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Projekt 5.9 Scaling - the Physics of Lilliput 

Teksten er et foredrag holdt af Philip Morrison, Massachusetts Institute of Technology i 1968 ved de 
såkaldte Christmas Lectures. Teksten findes flere steder på nettet, fx : http://www.dinosaurtheory.com/links.html . 

Projektets tema er skalering. Det er engelsksproget og lægger således op tip et fagligt samarbejde, fx med 
læsning af uddrag af Gullivers rejser af Swift. Teksten slutter med en række spørgsmål, som kan danne 
grundlag for en skriftlig eller mundtlig besvarelse. Efter teksten er der en række henvisninger til litteratur ig 
til nettet, hvor yderligere materialer om skalering kan findes. 

 
The fictional traveler Lemuel Gulliver spent a busy time in a kingdom called Lilliput, where all living things -- 
men, cattle, trees, grass -- were exactly similar to our world, except that they were all built on the scale of 
one inch to the foot. Lilliputians were a little under 6 inches high, on the average, and built proportionately 
just as we are. Gulliver also visited Brobdingnag, the country of the giants, who were exactly like men but 
12 times as tall. As Swift described it, daily life in both kingdoms was about like ours (in the 18th century). 
His commentary on human behavior is still worth reading, but we shall see that people of such sizes just 
could not have been as he described them.  
 
Long before Swift lived, Galileo understood why very small or very large models of man could not be like us, 
but apparently Dean Swift had never read what Galileo wrote. One character in Galileo's ``Two New 
Sciences'' says, ``Now since. . . in geometry, . . . mere size cuts no figure, I do not see that the properties of 
circles, triangles, cylinders, cones, and other solid figures will change with their size . . . ." But his physicist 
friend replies, ``The common opinion is here absolutely wrong.'' Let us see why.  
 
We start with the strength of a rope. It is easy to see that if one man who pulls with a certain strength can 
almost break a certain rope, two such ropes will just withstand the pull of two men. A single large rope with 
the same total area of cross-section as the two smaller ropes combined will contain just double the number 
of fibers of one of the small ropes, and it will also do the job. In other words, the breaking strength of a 
wire or rope is proportional to its area of cross-section, or to the square of its diameter. Experience and 
theory agree in this conclusion. Furthermore, the same relation holds, not only for ropes or cables 
supporting a pull, but also for columns or struts supporting a thrust. The thrust which a column will 
support, comparing only those of a given material, is also proportional to the cross-sectional area of the 
column.  
 
Now the body of a man or an animal is held up by a set of columns or struts -- the skeleton -- supported by 
various braces and cables, which are muscles and tendons. But the weight of the body which must be 
supported is proportional to the amount of flesh and bone present, that is, to the volume.  
 
Let us now compare Gulliver with the Brobdingnagian giant, 12 times his height. Since the giant is exactly 
like Gulliver in construction, every one of his linear dimensions is 12 times the corresponding one of 
Gulliver's. Because the strength of his columns and braces is proportional to their cross-sectional area and 
thus to the square of their linear dimension, his bones will be 122 or 144 times as strong as Gulliver's. 
Because his weight is proportional to his volume and thus to L3, it will be 123 or 1728 times as great as 
Gulliver's. So the giant will have a strength-to-weight ratio a dozen times smaller than ours. Just to support 
his own weight, he would have as much trouble as we should have in carrying 11 men on our back.  
In reality, of course, Lilliput and Brobdingnag do not exist. But we can see real effects of a difference in 
scale if we compare similar animals of very different sizes. The smaller ones are not scale models of the 
larger ones. Compare the corresponding leg bones of two closely related animals of the deer family: one a 
tiny gazelle, the other a bison. Notice that the bone of the large animal is not at all similar geometrically to 
that of the smaller. It is much thicker for its length, thus counteracting the scale change, which would make 
a strictly similar bone too weak.  
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Galileo wrote very clearly on this very point, disproving 
the possibility of Brobdingnag, or of any normal-
looking giants: ". . . if one wishes to maintain in a great 
giant the same proportion of limb as that found in an 
ordinary man he must either use a harder and stronger 
material for making the bones, or he must admit a 
diminution of strength in comparison with men of 
medium stature; for if his height be increased 
inordinately he will fall and be crushed under his own 
weight. Whereas, if the size of a body be diminished, 
the strength of that body is not diminished in the same 
proportion; indeed, the smaller the body the greater 
its relative strength. Thus a small dog could probably 
carry on his back two or three dogs of his own size; but 
I believe that a horse could not carry even one of his 
own size." 

 

 

 
An elephant is already so large that his limbs are clumsily thickened. However, a whale, the largest of all 
animals, may weigh 40 times as much as an elephant; yet the whale's bones are not proportionately 
thickened. They are strong enough because the whale is supported by water. What is the fate of a stranded 
whale? His ribs break. Some of the dinosaurs of old were animals of whalelike size; how did they get along?  
Following Galileo, we have investigated the problems of scaling up to giants. Now let's take a look at some 
of the problems that arise when we scale down.  
 
When you climb dripping wet out of a pool there is a thin film of water on your skin. Your fingers are no less 
wet than your forearm; the thickness of the water film is much the same over most of your body. Roughly, 
at least, the amount of water you bring out is proportional to the surface area of your body.  
 

Amount of water 
L is your height. The original load on your frame is as before, proportional to your volume. So, the ratio 
extra load/original load is proportional to L2/L3, or to 1/L. Perhaps you carry out of the pool a glassful or so, 
which amounts to about a 1% increase in what you have to move about. But a Lilliputian will bring out 
about 12% of his weight, which would be equivalent to a heavy winter suit of clothing with an overcoat. 
Getting out of the pool would be no fun! If a fly gets wet, his body load doubles, and he is all but 
imprisoned by the drop of water.  
 

Heat loss 
There is a still more important effect of the scale of a living body. Your body loses heat mainly through the 
skin (and some through breathing out warm air). It is easy to believe -- and it can be checked by experiment 
-- that the heat loss is proportional to the surface area, keeping other factors, like the temperature, nature 
of skin, and so on, constant. The food taken in must supply this heat, as well as the surplus energy we use 
in moving about. So minimum food needs go as L2. If a man like Gulliver can live off a leg of lamb and a loaf 
of bread for a day or two, a Lilliputian with the same body temperature will require a volume of food only 
as large. But his leg of lamb, scaled down to his world, will be smaller in volume by a factor of. Therefore, 
he would need a dozen of his roasts and loaves to feel as well fed as Gulliver did after one. Lilliputians must 
be a hungry lot, restless, active, graceful, but easily waterlogged. You can recognize these qualities in many 
small mammals, like a mouse.  
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We can see why there are no warm-blooded animals much smaller than the mouse. Fish and frogs and 
insects can be very much smaller because their temperature is not higher than their surroundings. In 
accord with the scaling laws of area and volume, small, warm-blooded animals need relatively a great deal 
of food; really small ones could not gather or even digest such an enormous amount. Certainly the 
agriculture of the Lilliputians could not have supported a kingdom like the one Gulliver described.  
Now we see that neither Brobdingnag nor Lilliput can really be a scale model of our world. But what have 
these conclusions to do with physics?  
 
Let's start again with the very large. As we scale up any system, the load will eventually be greater than the 
strength of the structure. This effect applies to every physical system, not just to animals, of course. 
Buildings can be very large because their materials are stronger than bone, their shapes are different, and 
they do not move. These facts determine the constants like K in the equation  

strength = KL2  
but the same laws hold. No building can be made which will look like the Empire State but be as high as a 
mountain, say 10 000 m. Mountains are solid structures, for the most part, without interior cavities. Just as 
the bones of a giant must be thick, an object of mountainous size on the earth must be all but solid, or else 
built of new materials yet unknown.  
 
Our arguments are not restricted to the surface of the Earth. We can imagine building a tremendous 
structure far out in space away from the gravitational pull of the earth. The load then is not given by the 
Earth's gravitational pull, but as the structure is built larger and larger each part pulls gravitationally on 
every other and soon the outside of the structure is pulled in with great force. The inside, built of ordinary 
materials, is crushed, and large protuberances on the surface break off or sink in. As a result any large 
structure like a planet has a simple shape, and if it is large enough, the shape is close to a sphere. Any other 
shape will be unable to support itself. Here is the essential reason why the planets and the Sun tend to be 
spherical. The pull of gravity is important for us on earth, but as we extend the range of dimensions which 
we study, it becomes absolutely dominant in the very large. Only motion can change this result. The great 
masses of gas which are nebulae, for example, are changing in time, and hence the law that large objects 
must be simple in shape is modified.  
 
When we go from our size to the very small, gravitational effects cease to be important. But as we saw in 
investigating Lilliput, surface effects become significant. If we go far enough toward the very small, surfaces 
no longer appear smooth, but are so rough that we have difficulty in defining a surface. Other descriptions 
must be used. In any case, it will not come as a complete surprise that in the domain of the atom, the very 
small, scale factors demonstrate that the dominant pull is one which is not easily observed in everyday 
experience.  
 
Such arguments as these run through all of physics. Like order-of-magnitude measurements, they are 
extremely valuable when we begin the study of any physical system. How the behavior of a system will 
change with changes in the scale of its dimensions, its motion, and so on, is often the best guide to a 
detailed analysis.  
 
Even more, it is by the study of systems built on many unusual scales that physicists have been able to 
uncover unsuspected physical relations. When changing scale, one aspect of the physical world may be 
much emphasized and another one may be minimized. In this way we may discover, or at least get a clearer 
view of, things which are less obvious on our normal scale of experience. It is largely for this reason that 
physicists examine, in and out of their laboratories, the very large and the very small, the slow and the 
rapid, the hot and the cold, and all the other unusual circumstances they can contrive. In examining what 
happens in these circumstances we use instruments both to produce the unusual circumstances and to 
extend our senses in making measurements.  
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It is hard to resist pointing out how much the scale of man's own size affects the way he sees the world. It 
has been largely the task of physics to try to form a picture of the world which does not depend upon the 
way we happen to be built. But it is hard to get rid of these effects of our own scale. We can build big roads 
and bridges which are long and thin, but are essentially not three-dimensional, complex structures. The 
very biggest things we can make which have some roundness, which are fully three-dimensional, are 
buildings and great ships. These lack a good deal of being a thousand times larger than men in their linear 
dimensions.  
 
Within our present technology our scaling arguments are important. If we design a new large object on the 
basis of a small one, we are warned that new effects too small to detect on our scale may enter and even 
become the most important things to consider. We cannot just scale up and down blindly, geometrically, 
but by scaling in the light of physical reasoning, we can sometimes foresee what changes will occur. In this 
way we can employ scaling in intelligent airplane design, for example, and not arrive at a jet transport that 
looks like a bee -- and won't fly.  
 
Essay Questions  

1. The leg bones of one animal are twice as strong as those of another closely related animal of 
similar shape. (a) What would you expect to be the ratio of these animals' heights? (b) What would 
you expect to be the ratio of their weights?  

2. A hummingbird must eat very frequently and even then must have a highly concentrated form of 
food such as sugar. What does the concept of scaling tell you about the size of a hummingbird?  

3. About how many Lilliputians would it take to equal the mass of one citizen of Brobdingnag?  

Essay Problems  

1. The total surface area of a rectangular solid is the sum of the areas of the six faces. If each 
dimension of a given rectangular solid is doubled, what effect does this have on the total surface 
area?  

2. A hollow metal sphere has a wall thickness of 2 cm. If you increase both the diameter and thickness 
of this sphere so that the overall volume is three times the original overall volume, how thick will 
the shell of the new sphere be?  

3. If your height and all your other dimensions were doubled, by what factor would this change (a) 
your weight? (b) the ability of your leg bones to support your weight?  

4. According to the zoo, an elephant of mass 4.0 X 103 kg consumes 3.4 X 102 times as much food as a 
guinea pig of mass 0.70 kg. They are both warm-blooded, plant-eating, similarly shaped animals. 
Find the ratio of their surface areas, which is approximately the ratio of their heat losses, and 
compare it with the known ratio of food consumed.  

5. A rectangular water tank is supported above the ground by four pillars 5.0 m long whose diameters 
are 20 cm. If the tank were made 10 times longer, wider, and deeper, what diameter pillars would 
be needed? How much more water would the tank hold?  

6. How many state maps of scale 1:1 000 000 would you need to cover the state with those maps?  

*Adapted from PSSC PHYSICS, 2nd edition, 1965; D.C. Heath and Company with Education Development 
Center, Inc., Newton, MA.  
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En fremragende og meget pædagogisk introduktion til skalering, med et væld af eksempler: 
http://www.av8n.com/physics/scaling.htm 
 
En side med et væld af eksempler, der kan anvendes i små forløb. Projektets tekst er hentet fra denne side: 
http://www.dinosaurtheory.com/links.html 
 
En artikel om flyveøglerne på dinosaurernes tid, der stiller spørgsmålet:  hvordan kunne quetzalcoatlus 
flyve? Det viser sig at være et meget vanskeligt spørgsmål, som kunne danne baggrund for et 
srudieretningsprojekt. Artiklen kan hentes her. 

http://www.av8n.com/physics/scaling.htm
http://www.dinosaurtheory.com/links.html
http://www.lr-web.dk/Lru/microsites/hvadermatematik/hem1download/Kap5_projekt5_9_skalering_hvordan_kunne_quetzalcoatlus_flyve.pdf

